Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Microbiol Spectr ; 11(3): e0516322, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2294281

RESUMEN

Rising breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.4/5 led to the performance of various studies investigating systemic immunity and neutralizing antibodies in sera, but mucosal immunity remains understudied. In this cohort study, the humoral immune responses, including immunoglobulin levels and the presence of virus-neutralizing antibodies, of 92 vaccinated and/or BA.1/BA.2 convalescent individuals were investigated. Cohorts received two doses of ChAdOx1, BNT162b2, or mRNA-1273 and subsequent booster vaccination with either BNT162b2 or mRNA-1273, following BA.1/BA.2 infection. In addition, vaccinated and nonconvalescent or unvaccinated and BA.1 convalescent individuals were studied. Serum and saliva samples were used to determine SARS-CoV-2 spike-specific IgG and IgA titers and neutralizing activity against replication-competent SARS-CoV-2 wild-type virus and the Omicron BA.4/5 variant. Vaccinated/convalescent cohorts demonstrated strongest neutralization against BA.4/5, with 50% neutralization titer (NT50) values reaching 174.2; however, neutralization was reduced up to 11-fold, compared to wild-type virus. Both BA.1 convalescent and vaccinated nonconvalescent cohorts displayed the weakest neutralization against BA.4/5, with NT50 values being reduced to 4.6, accompanied by lower numbers of positive neutralizers. Additionally, salivary neutralization against wild-type virus was strongest in vaccinated and BA.2 convalescent subjects, but this elevated neutralization efficiency was lost when challenged with BA.4/5. Our data support the contention that current coronavirus disease 2019 (COVID-19) vaccines efficiently induce humoral immunity. However, antiviral effectiveness in serum and saliva is greatly reduced against novel variants of concern. These results suggest an adjustment of current vaccine strategies to an adapted or alternative vaccine delivery, such as mucosal booster vaccinations, which might establish enhanced or even sterilizing immunity against novel SARS-CoV-2 variants. IMPORTANCE Rising incidences of breakthrough infections caused by SARS-CoV-2 Omicron BA.4/5 have been observed. Although various studies were conducted investigating neutralizing antibodies in sera, mucosal immunity was barely evaluated. Here, we investigated mucosal immunity, since the presence of neutralizing antibodies at mucosal entry sites plays a fundamental role in disease limitation. We found strong induction of serum IgG/IgA, salivary IgA, and neutralization against SARS-CoV-2 wild-type virus in vaccinated/convalescent subjects but detected 10-fold reduced (albeit positive) serum neutralization against BA.4/5. Interestingly, vaccinated and BA.2 convalescent patients demonstrated the greatest serum neutralization against BA.4/5, but this advantageous neutralizing effect was not observed in the saliva. Our data support the contention that current COVID-19 vaccines are very efficient against severe/critical disease progression. Moreover, these results suggest an adjustment of the current vaccine strategy to adapted and alternative vaccine delivery, such as mucosal booster vaccinations, to establish robust sterilizing immunity against novel SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacuna BNT162 , Vacunas contra la COVID-19 , Vacuna nCoV-2019 mRNA-1273 , Estudios de Cohortes , Convalecencia , COVID-19/prevención & control , Vacunación , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infección Irruptiva , Inmunoglobulina A
2.
Antiviral Res ; 213: 105581, 2023 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2257164

RESUMEN

The identification of the SARS-CoV-2 Omicron variants BA.4/BA.5, BF.7 and BQ.1.1 immediately raised concerns regarding the efficacy of currently used monoclonal antibody therapies. Here we examined the activity of monoclonal antibody therapies and antiviral drugs against clinical specimens for SARS-CoV-2 Omicron BA.4/BA.5, BF.7 and BQ.1.1 employing an immunofluorescence neutralization assay. Further we explored treatment of BA.4/BA.5 infections with efficient antiviral drugs and monoclonal antibodies in a 3D model of primary human bronchial epithelial cells. We found that the antiviral drugs Molnupiravir, Nirmatrelvir and Remdesivir efficiently inhibit BA.4/BA.5, BF.7 and BQ.1.1 replication. In contrast, only the monoclonal antibody Cilgavimab exerted an inhibitory effect, while Tixagevimab, Regdanvimab and Sotrovimab lost their efficacy against BA.4/BA.5. We found that only the prophylactic treatment with Cilgavimab impacted on tissue inflammation by reducing intracellular complement component 3 (C3) activation following BA.4/BA.5 infection in primary human airway epithelial grown in air-liquid-interphase, which was not the case when using antiviral drugs or Cilgavimab after establishment of infection. Of note, all tested monoclonal antibodies had no neutralizing activity during infection by BF.7 and BQ.1.1 variants. Our results suggest that despite a marked reduction of viral replication, potent antiviral drugs fail to reduce tissue levels of inflammatory compounds such as C3, which can still result in tissue destruction.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Monoclonales , Anticuerpos Neutralizantes/farmacología , Antivirales/farmacología , Anticuerpos Antivirales
3.
J Infect Dis ; 228(2): 160-168, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2264295

RESUMEN

BACKGROUND: The emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants BA.1, BA.2, and BA.4/5 demonstrate higher transmission and infection rates than previous variants of concern. To evaluate effectiveness of heterologous and homologous booster vaccination, we directly compared cellular and humoral immune responses as well as neutralizing capacity against replication-competent SARS-CoV-2 wild type, Delta, and Omicron variants BA.1, BA.2, and BA.4/5. METHODS: Peripheral blood mononuclear cells and serum samples from 137 participants were investigated, in 3 major groups. Individuals in the first group were vaccinated twice with ChAdOx1 and boosted with a messenger RNA (mRNA) vaccine (BNT162b2 or mRNA-1273); the second group included triple mRNA--vaccinated participants, and the third group, twice-vaccinated and convalescent individuals. RESULTS: Vaccination and convalescence resulted in the highest SARS-CoV-2-specific antibody levels, stronger T-cell responses, and best neutralization against wild type, Delta Omicron BA.2, and BA.4/5, while a combination of ChAdOx1 and BNT162b2 vaccination elevated neutralizing capacity against Omicron BA.1. In addition, heterologous booster regimens, compared with homologous regimens, showed higher efficacy against Omicron BA.2 as well as BA.4/5. CONCLUSIONS: We showed that twice-vaccinated and convalescent individuals demonstrated the strongest immunity against Omicron BA.2 and BA.4/5 variant, followed by those receiving heterologous and homologous booster vaccine regimens.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , Leucocitos Mononucleares , SARS-CoV-2/genética , Anticuerpos Antivirales , ARN Mensajero , Anticuerpos Neutralizantes
4.
J Infect Dis ; 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2241745

RESUMEN

Omicron variants are still the dominant SARS-CoV-2 viruses worldwide, therefore determining the level of protection from infection and severe disease is essential. Here, we investigated humoral and cellular immunity of individuals immunized by ChAdOx1, BNT162b2 and mRNA-1273 and our results show that IgG and neutralization titers wane over time. However, strongest neutralization against Omicron BA.1 and T cell responses were detected in ChAdOx1 vaccinees six months after the second dose, while no long lasting neutralization was shown against BA.2 in any cohort. Crucially, our investigation revealed that immunity against variants of concern is heterogenic and dependent on the immunization status.

5.
Front Immunol ; 13: 868361, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1933649

RESUMEN

Background: Residents of nursing homes are one of the most vulnerable groups during the severe acute syndrome coronavirus 2 (SARS-CoV-2) pandemic. The aim of this study was to characterize cellular and humoral immune responses in >70-year-old participants before vaccination, after first and second vaccination with BNT162b2, in contrast to second-dose-vaccinated participants younger than 60 years. Methods: Peripheral blood mononuclear cells of 45 elderly and 40 younger vaccinees were analyzed by IFNγ ELISpot, specific immunoglobulin G antibody titers against SARS-CoV-2 spike protein, and neutralization abilities against SARS-CoV-2 wild-type (WT) and Delta variant (B.1.617.2). Results: Our results clearly demonstrate a significantly increased T cell response, IgG titers, and neutralization activities against SARS-CoV-2 WT and Delta between first and second vaccination with BNT162b2 in elderly vaccinees, thereby highlighting the importance of the second booster. Interestingly, similar cellular and humoral immune responses against SARS-CoV-2 WT and Delta were found after the second vaccine dose in the young and elderly groups. Conclusions: Our data demonstrate a full picture of cellular and humoral immune responses of BNT162b2-vaccinees in two age cohorts. In all vaccines, SARS-CoV-2 WT-specific antibodies with similar neutralizing activity were detected in all vaccinees. After the second vaccination, neutralization titers against SARS-CoV-2 Delta were impaired in both age groups compared with SARS-CoV-2 WT, thereby emphasizing the need for an additional booster to overcome rising variants of SARS-CoV-2.


Asunto(s)
COVID-19 , Vacunas Virales , Anciano , Anticuerpos Antivirales , Vacuna BNT162 , Humanos , Inmunidad Humoral , Leucocitos Mononucleares , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
6.
J Allergy Clin Immunol ; 149(4): 1242-1252.e12, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1654642

RESUMEN

BACKGROUND: Few studies have directly compared virus-specific antibodies and their neutralizing capacity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wild type (WT) and circulating variants of concern despite the reported high efficacy of messenger RNA (mRNA)- and vector-based vaccines. OBJECTIVE: We assessed SARS-CoV-2 spike protein region 1 (S1)-specific antibodies of BNT162b2, mRNA-1273, and ChAdOx1 vaccinated as well as convalescent coronavirus disease 2019 (COVID-19) patients. We also determined the neutralization ability against SARS-CoV-2 WT and B.1.1.7 (Alpha), B1.1.7 E484K (Alpha-E484K), B.1.351 (Beta), and B.1.617.2 (Delta) variants. METHODS: Serum samples of 107 fully vaccinated or convalescent individuals were analyzed for anti-SARS-CoV-2-S1 IgG and IgA as well as for total anti-SARS-CoV-2 receptor binding domain Ig. Furthermore, neutralization capacity as 50% and 90% neutralization titer values against SARS-CoV-2 WT virus and circulating variants were determined. RESULTS: We observed a robust IgG response in all participants; however, the highest titers were detected in mRNA-based vaccine recipients. In case of serum IgA responses, the difference between mRNA- and vector-based vaccines or convalescent patients was even more pronounced. Interestingly, all 3 vaccines could neutralize all tested variants of concern in addition to WT virus, but in some individuals, only low or no neutralization, especially against Alpha-E484K and the Delta variant, was detected. CONCLUSION: Our study of the efficacy of various COVID-19 vaccines found that mRNA-1273 had the highest neutralization abilities compared to BNT162b2 and ChAdOx1. COVID-19 convalescent patients demonstrated the most heterogeneous range of antibody titers and neutralization abilities, making it hard to assess protection. Furthermore, a significant positive relation between antibodies and the 50% neutralization titer values for immunized and convalescent individuals was determined.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina A , Inmunoglobulina G , ARN Mensajero , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA